solution 0The researchers conducted two sets of experiments ("Predict the speed-dating outcomes and get up to $6 (takes less than 20 min)" and a similar Prolific experiment) in which participants interacted with the AI system in a task of predicting the outcome of a dating to explore the impact of model explainability and feedback on user trust in AI and prediction accuracy. The results show that although explainability (e.g., global and local interpretation) does not significantly improve trust, feedback can most consistently and significantly improve behavioral trust. However, increased trust does not necessarily lead to the same level of performance gains, i.e., there is a "trust-performance paradox". Exploratory analysis reveals the mechanisms behind this phenomenon.
Q3: How does result feedback and model interpretability affect user task performance?
English thesis Chinese Traditional Español Jung Jin-seo, Jung Jin-seo Bahasa Indonesia The Interpretability of Artificial Intelligence and the Impact of Outcome Feedback on Trust: A Comparative Study Deutsch
Xue Zhirong, Designer, Interaction Design, Human-Computer Interaction, Artificial Intelligence, Official Website, Blog, Creator, Author, Engineer, Paper, Product Design, Research, AI, HCI, Design, Learning, Knowledge Base, xuezhirong, UX, Design, Research, AI, HCI, Designer, Engineer, Author, Blog, Papers, Product Design, Study, Learning, User Experience